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Introduction

About myself

Why artificial neural networks

Simple perceptrons are too limited

ANN research: biologically implausible paradigms

I started my professional life as an electrical engineer; in 4th year at the University of 
Waterloo, we built logic circuits such as AND, OR, and XOR gates out of transistors and other 
components; we built a rudimentary computer using commercial TTL chips.
After working as an engineer for 7 years, mostly in computer systems, I went to medical 
school, and eventually specialized in psychiatry. While studying neurophysiology as a medical 
student, however, it dawned on me that it should be possible to design and fabricate 
functional neuron systems and networks as silicon chips (ie, integrated circuits).
I started reading about artificial neural networks, and was initially heartened by the earliest 
attempts, such as the McCulloch-Pitts neuron, in 1943, and the Perceptron of Rosenblatt, in 
1962. But in 1969 Minsky and Papert published a book with the title “Perceptrons” in which 
they demonstrated mathematically that the simple perceptron was unable to deal with a 
number of important cases in pattern recognition. This book had a major influence on 
research in artificial neural networks: funding for work on perceptrons dried up, and a large 
number of complicated paradigms were introduced, such as backpropagation, Hopfield 
networks, adaptive resonance theory, and so on. To my way of thinking, these paradigms 
were far removed from biological plausibility. For example, backpropagation networks often 
required thousands of passes through the training data to learn with acceptable error rates.



New Insights!

Recognition of temporal patterns

Forcing inputs for classical conditioning

While searching through the stacks in the medical library at McGill, I came across a book by a 
researcher in the department of anatomy at University College in London. I learned that by 
feeding the outputs of a group of neurons back to the inputs, one could process temporal 
patterns with simple perceptron-like topologies. I also learned that, if you provided a 
separate set of inputs which could be used to force the output neurons to fire, then you could 
build a simple network which could learn with very little training using classical conditioning 
paradigms; perhaps even one-trial learning would be possible! And this type of learning could 
be accomplished using the Hebbian rule for adjusting synaptic weights.



Temporal patterns

For music or speech recognition

A way of storing properties about objects

Makes the perceptron into a finite state machine

Simplifies machine vision

Classification of time-based patterns such as speech or music recognition would be the 
obvious candidates for neural networks with their outputs fed back to their inputs. However, 
the anatomy researcher’s book also made a good case that we store information about the 
properties of things as temporal patterns. For example, a baby learns about the hardness of a 
wood block or the softness of a blanket by chomping down on it with its gums and storing 
the temporal pattern of a certain amount of force exerted by its jaws and the resulting 
pressure sensations on its gums.
What I began to realize, is that feeding back outputs to inputs means in essence that the 
neural network can do pattern classification taking into account not only the current state of 
the inputs, but also previous states. This makes it a finite state machine, and overcomes the 
objections that had been raised by Minsky and Papert to the generalisability of the 
perceptron.
Finally, by thinking of vision as temporal pattern classification, we can simplify the problem of 
machine vision enormously.



Early development

Programming in Hypercard and StarLogo

MOPS

MacForth

Python

I made a number of attempts to program these ideas, starting with programming languages 
which allowed for individual entities to operate independently. I tried Hypercard, then 
Starlogo, then an object-oriented Forth called MOPS. But I made little real progress until I 
switched to MacForth. I was able to successfully demonstrate temporal pattern classification 
with this programming environment.
Eventually, though, computer and operating system upgrades led to problems with the 
MacForth implementation. When I was unable to contact the MacForth developer for support, 
I made the decision to reprogram in python. This has been extremely productive for static, 
non-temporal pattern classification, and I am fairly close to having something that could be 
used for general pattern classification tasks.
OK, that takes care of the introduction.



Biological neuron basics

Now let’s get down to some details.
I realize that I am talking to experts in neurobiology, so please forgive me for going over 
stuff you are familiar with.
Here is an illustration from a textbook showing a postsynaptic neuron with terminal branches 
from presynaptic neurons terminating in synapses on its body and dendrites.



Summation 
of post-
synaptic 

potentials
This illustration shows what happens to the membrane potential of the postsynaptic neuron 
near a synapse when that synapse is repeatedly fired by action potentials from the 
presynaptic neuron, but at a slow rate. Typically, the synaptic weight will not be sufficient for 
the depolarization to trigger an action potential.



Temporal
summation

This is what happens when the successive pulses are closer together in time. Now the 
depolarizations when added together, exceed the threshold of the postsynaptic neuron and 
an action potential results.



Spatial 
summation

If the synapses from two different presynaptic neurons are located close together physically 
on the cell body or on a dendrite of a postsynaptic neuron, then an action potential can be 
generated if both neurons fire at about the same time. This represents a logical AND 
function.
Because the two presynaptic neurons need to fire at about the same time, this circuit is also a 
coincidence detector.
If the weights for each synapse were high enough, then either presynaptic neuron by itself 
could trigger an action potential. This would be a logical OR gate.
Finally, just to recall that inhibitory post-synaptic potentials will act so as to reduce the 
likelihood of the threshold being exceeded and an action potential occurring.



Interval 
recognition 

in music
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Let’s apply this to a basic problem in music recognition, for example, detecting a particular 
interval. Suppose that we have fibers impinging on a neuron which is supposed to detect 
minor third intervals. These fibers, from the auditory nerve and possibly from other auditory 
processing areas of the brain, carry information about the intensity and frequency of sound 
signals transduced by the cochlea. I’m making the assumption here that all these fibers carry 
spatially encoded information, and that the arrival of spikes at almost the same time on 
different fibers is important, not the frequency of the spikes or the interspike interval. For all 
the different minor third intervals (ie starting on different pitches) the set of synapses 
relevant to the interval for a given pitch will be located close to each other and far enough 
away from the sets of synapses for other pitches to avoid interference. Also for a given set of 
synapses, the weights of each synapse will need to be such that the intensity of each of the 
partials characteristic of a minor third interval are in the correct proportions to summate both 
temporally and spatially to produce an action potential.
Of course, this is an enormous oversimplification. But I hope that it demonstrates the 
principle. 
When the notes of an interval are separated in time, as in a melody, we need a paradigm 
which takes into account both place and time information. The simplest would be to take our 
coincidence detector and add a time delay to one of the synaptic inputs. This could be done 
biologically with an additional neuron or string of neurons.



Time-based 
pattern 

classification

I mentioned earlier that feeding the outputs of a group of neurons back as inputs turns the 
group of neurons into a state machine, and allows for the classification of time-based, or 
serial patterns. Music and speech are, of course, time-based patterns. But it may be that our 
brains store much of what we know about our environment as serial patterns. Think of our 
sense of touch: when we apply a certain contact force to something (quantified by spindle 
receptors in our muscles and Golgi organ receptors in tendons), there is a subsequent signal 
from pressure receptors in our skin.
I think that there is good evidence that a lot of visual pattern recognition may also use serial 
patterns.



Problems with Spatial Pattern 
Recognition

A A A

A A
Let’s look at a typical machine vision problem, recognition of printed text. If we use a neural network to recognize individual letters coded as a 
pixel patterns, it works very well when all the letters are the same style, boldness, size, and orientation. But if there are large differences in 
size or rotation of the image, pixel-based recognition systems typically have to do a lot of image pre-processing to normalize these 
parameters.



Problems with Spatial Pattern 
Recognition - 2

A
1

2

3
4

• 1. Follow edge for 
distance x

• 2. CCW angle 30°; 
follow edge for distance 
x

• 3. Angle 180°; follow 
edge for distance x/3

• 4. CW angle 120°; 
follow edge for distance 
x/2

But there are other ways of describing the text characters. Suppose our wetware can detect edges. This letter A can then be described as a 
set of vectors, each edge having a length and a rotation.
Now if we describe the length of the vectors not in absolute units, but in terms of the ratio of a given vector’s length with the length of the first 
vector, and the same for orientation, that is, as an angular displacement from the first vector. 
The letter is now described as a sequence of relative vectors. There is no necessity to make expensive transformations to accommodate 
different sizes or orientations of letters prior to recognition.



Why serial patterns?

Adaptive filters

Control of robotic movement sequences

Collision avoidance

A neural network that works well with serial patterns has all sorts of potential uses. Think of 
adaptive filters, for example in telecommunications. A sequence of outputs from such a 
network can be used to control robots.
Here’s an interesting possibility: collision avoidance.
How can you tell, when you’re on a boat, if you are on a collision course with another boat?
If both you and the other boat are holding a steady course, then you know you are going to 
collide if the relative bearing from you to the other boat remains the same, and it’s getting 
bigger.
It’s highly likely that a housefly is so good at avoiding a fly swatter by using the same 
principle. Its compound eye is very good at detecting the direction from which light is 
coming.  If it picks up something with one of the cells of its compound eye, and concentric 
cells subsequently become activated, that means the relative bearing remains the same while 
the object is getting closer. A collision course! For aircraft, phased array radar can provide 
similar directional information.
I’m sure you can come up with lots of other interesting ways to use neural networks with 
serial patterns.



Improving performance

The dimensionality curse

My neural network paradigm is good at pattern classification of serial patterns; I tried this out 
several years ago with a macForth version.
More recently, my development efforts have gone into tweaking the performance of my 
paradigm with static patterns. I’ve had some discussions with Yoshua Bengio, a researcher at 
the University of Montreal that you probably know. He pointed out that a big problem in 
pattern classification has to do with what is known as the “dimensionality curse”. Now I don’t 
pretend to understand what this means mathematically, but basically when you have a lot of 
attributes or dimensions, the accuracy and/or the performance of nearest neighbour 
classifiers can take a big hit.
So I was interested in finding ways to reduce the number of attributes. By experimenting, I 
came up with a simple way to rank-order the attributes in a dataset according to how much 
they contributed to differentiating between classes. With this, I could simply ignore the 
attributes which didn’t contribute a lot, which meant that the whole classification process 
could be speeded up and use a lot less resources.



The MNIST dataset
Images of handwritten numerals, 0 thru 9

Each image is 28x28 pixels, 255 grayscale levels

Training set: 60,000 images

Test set: 10,000 images

With contrast enhancement to use black-white only:

for all 28x28 = 784 pixels: 96.60% accuracy

when using only 313 pixels: 96.75% accuracy

When I applied this to the MNIST dataset of handwritten numerals, for example, I found that 
by reducing the gray-scale from 255 levels to just two (black or white), and by using the 313 
out of 784 pixels which differentiated the best between the 10 numerals, I was able to 
achieve higher levels of accuracy (with less computational resources) than when using the 
original dataset.



Continuous vs 
categorical attributes

Did I mention that this neural network classifier uses Hamming distance to calculate nearest 
neighbours? Hamming distance is the separation between two binary numbers, ie numbers 
expressed only in 0s and 1s.
To convert categorical attributes to binary numbers is easy; assign one bit to each category. 
But there is an even better way: just use one bit for each class. Here, we use a pre-processing 
stage in which we set up lists of values for each categorical attribute, one list per class. For a 
given case, if the value for the attribute is found in one of the lists, set the bit corresponding 
to that class. This approach functions like contrast enhancement to improve accuracy.
Continuous attributes are a bit trickier; my initial approach had been to calculate the span (ie 
subtract the minimum value from the maximum) and divide the span into a number of equally 
sized bins. The number of bins is an adjustable parameter, but for most of the datasets I 
used, accuracy was optimum when the number of bins was maybe 8 or 16.



But I then had the insight, what if we treat continuous attributes like categorical attributes, ie 
instead of one bit per bin, we would use one bit per class, and create cut-off points to 
maximize the separation between classes?



Leukemia dataset

genomics dataset (microarray data)

72 cases in 2 classes, with 5148 real-valued attributes

leave-one-out cross-validation:

all 5148 attributes: 77.778% accuracy

6 attributes, 14 slices: 100% accuracy

3 attributes, 72 slices: 100% accuracy

But I then had the insight, what if we treat continuous attributes like categorical attributes, ie 
instead of one bit per bin, we would use one bit per class, and create cut-off points to 
maximize the separation between classes? This slide shows results with one dataset.

But there is a problem. When I make the number of slices high enough, the preprocessing 
starts to become part of the training, and since I have been doing the preprocessing on the 
whole dataset, this amounts to partially training the neural network on the cases which I later 
test on. This contributes to the high accuracy. The answer is to do the partitioning for the 
cross-validation prior to the pre-processing step. This would reduce accuracy, I don’t know 
by how much.
It would require a major rewrite of the software, though. And that’s what I’m looking at doing 
right now.



Next steps

Roads to follow:

Commercial product: classifier for static problems

Cognitive neuroscience research: explore insights into 
biological neural processes

Development of firmware approaches to time-based 
pattern recognition


